
Theor Chim Acta (1993) 84:363 375 Theoretica
Chimica Acta
© Springer-Verlag 1993

Moving beyond message passing.
Experiments with a distributed-data model

Robert J. Harrison
Theoretical Chemistry Group, Chemistry Division, Argonne National Laboratory,
Argonne, IL 60439, USA

Received October 1, 1991/Accepted April 7, 1992

Summary. A message-passing model provides a natural and efficient parallel
implementation for many applications in chemical physics on MIMD machines.
However, although the distinction between local and non-local memory is at the
very heart of writing efficient parallel programs, message passing leaves all
responsibility for data management to the applications. This has significant,
detrimental implications for both ease of programming and efficient use of
shared and distributed resources. Examined here is a simple model which
increments message passing with Linda-like tools for the manipulation of
distributed-data structures. This is applied to common algorithms in chemical
physics.

Key words: Distributed-data model - Message passing

1 Introduction

Many algorithms in chemical physics are either parallel at a very coarse grain
(e.g. Monte Carlo or SCF) or are readily addressed with either a static domain
decomposition or task-driven systolic loop. In either case, message passing
provides an efficient and natural implementation. All the distributed-memory
multiple-instruction multiple-data (MIMD) applications described at this work-
shop adopted a message-passing model. The message-passing interface may have
been vendor specific (i.e. Intel's NX [1]), or portable (e.g. Parasoft's Express [2]),
TCGMSG [3], P4 [4], PIC.L [6], PVM [7]) or built into the language (e.g. occam
[8, 9]), but they are all very similar in spirit. The essentially exclusive adoption of
message passing is also reflected in the physical sciences parallel computing
literature where the only common alternative adopted is loop-based parallelism,
usually in a few-processor shared-memory environment [10].

However, there are many algorithms for which the derivation of a message-
passing implementation is non-trivial, error-prone and far from "natural".
Dynamic load balancing can be such a problem as this requires global access and
updating of the pool/list/index of tasks remaining to be performed. This arises in
quantum Monte Carlo simulations with a large spread in branching weights or
the evaluation of ab initio two-electron integrals in systems with high symmetry

364 R.J. Harrison

and/or high angular momentum functions [13]. Both give rise to a large variation
in the task size.

Another example is provided by an algorithm requiring asynchronous access
(read or write) to the data within another process. This might occur in domain
decompositions with exchange of boundary information or in accessing a shared
"file" that is being buffered in distributed memory. A message-passing solution
is straightforward only if the process with the data can anticipate when other
processes will access data. Otherwise, each process must either explicitly poll for
requests or implement fully-asynchronous event-driven mechanisms to allow the
process to continue with useful work while transparently processing remote
requests. The second solution is by far the most sophisticated and powerful, but
is expensive to code on a case-by-case basis and requires that the programmer be
knowledgeable of issues of which most physical scientists would probably rather,
and quite reasonably so, remain unaware: e.g. deadlock, mutual-exclusion,
re-entrancy, event-driven algorithms. Of these, only deadlock is of common
concern in most message-passing programs. Also, many FORTRAN compilers
are not capable of generating re-entrant code, requiring use of other languages.

In both of these examples the manipulation of shared/distributed data was
the prime cause of the complexity. Consider also how these concerns are
magnified on machines with many more processors (e.g. O(104)) than is common
today (approx. O(102)). Few would claim to understand how to make effective
use of the resources of such machines and a message-passing model, except by
making the distinction between local and remote memory painfully explicit, does
not contribute to an understanding of writing scalable applications.

There are possibly more parallel programming models, languages, environ-
ments, paradigms, etc. than computer scientists, and a selection of formal
frameworks within which parallel programs may be specified independent of their
implementation (good introductions to this literature are contained in [14-18]
and in conference proceedings published in the various ACM journals). Little of
this work has thus far been expressed in widely available, supported scientific
programming environments (exceptions might be Linda [16, 19, 20], Strand [17],
PCN [21, 22], loop level parallel FORTRAN/C compilers [14, 23-26]), but the
concepts involved are of immediate utility. For the present, message passing
remains the only parallel-programming environment that one can almost guaran-
tee is both readily available and potentially efficient on any MIMD machine.

We adopt an incremental approach and add just what is needed to recover a
concise and efficient expression of the class of algorithms discussed above. This
acknowledges the fact that many applications contain a mix of algorithms, only
some of which may require higher level tools. An incremental approach also
permits applications already using message-passing environments to take immedi-
ate advantage of these tools, which will be integrated into our portable message-
passing tool kit TCGMSG [3] as appropriate. In the process, we shall attempt to
learn about how to take advantage of more of the parallelism in our applications.

2 Distributed data

2.1 Linda

Linda [16, 19] is a memory model and a coordination language. Realizations of
this model in C and FORTRAN are commercially available [20] and there are

Moving beyond message passing. Experiments with a distributed-data model 365

many directions of related current research [27]. Few details of Linda will be
given here; see [19] for an introduction. The Linda memory is a tuple space, a
tuple being a series of typed values. Tuples may be either passive or under
evaluation (representing a thread of execution). C-Linda [19, 20] provides six
operations on tuples, out(), in(), rd(), hap(), rdp() and eval() which also coordinate
access to tuples, out() adds a tuple to tuple space, in() blocks until it finds a tuple
that matches the specified pattern, returns the requested data and then removes
the tuple from tuple space, rd() performs the same operation as in() except the
tuple is left in tuple space, while inp() and rdp() are non-blocking forms which
return true or false according to if the request was satisfied, eval() is similar to
out() except that new processes are created to evaluate each field of the tuple.
When all fields are evaluated, the tuple becomes passive.

As an example, consider creation of a tuple to simulate an element (number
199) in a distributed array which is subsequently read into the variable coeff,
perhaps in another process:

double coeff;
out("CI vector", 199, 0.003):
rd("CI vector", 199, ? coeff):

Linda provides a powerful programming model of which we shall adopt only
one aspect - the construction and manipulation of distributed-data structures
(ref. [19] provides many examples of such data). For examples of other environ-
ments drawing on concepts from Linda see ref. [27].

2.2 A simple distributed-data model

We seek to augment the successful static process message-passing model, with
efficient tools to manipulate and coordinate access to shared and distributed
data. The static process model implies we shall not use eval(). The applications
we are considering need only simple distributed-data structures, e.g. scalar,
arrays, sets of records. Current realizations of Linda [20, 27] fail to provide
information on where or how tuples are stored or accessed. Indeed, with a
requirement to match general tuples (partly at compile time, partly at runtime)
this information is not necessarily readily available. This prevents development
of accurate performance-models and can introduce inefficiencies in memory
usage and communication. In particular, large applications need to be fully
aware of local memory usage on typical-sized compute nodes (4-16 Mybtes).
Since we have only a limited number of data types, we may explicitly declare the
structure of the data, permitting the implementation to declare how and where
this data is stored. We no longer have a tuple space, merely some shared data.
Message passing would be extremely clumsy to coordinate access to the shared
data, so we retain the coordination properties of the basic operations (out(), in(),
rd(). inp(), rdp()) on the shared data.

Having thrown out so much of Linda, what is left?

• The existing message-passing interface (TCGMSG [3] or whatever is per-
ferred).

• The basic shared/distributed-data structures that we care to support explicitly
(to data: scalars; arrays; sets).

366 R.J. Harfison

• All the distributed-data structures that can be built from the basic structures,
which includes: linked lists; queues; trees.

• All the structures that arise from the coordination properties of the basic
operations (e.g. semaphores, barriers, monitors).

A very rich environment! In fact, between the message passing and the dis-
tributed data, there is a great deal of redundancy in this environment. This is
exactly what is needed for our present purpose, as we can freely experiment with
both models in the same program.

Similar suggestions have been made in other environments related to Linda.
Indexed objects (i.e. arrays) have been implemented in the object-oriented
Interwork lI Concurrent Programming Toolkit [28] with the goals of increasing
efficiency and expressivity. The developers of the AUCC+ +Linda System
[29] explicitly recognize tuple distribution as being critical to optimization and
conclude that current hash-table implementations are inadequate. Optimizations
proposed for the Mercury model [30] include user-defined data structures in tuple
space to permit optimization of data distribution in a networked environment.

Before looking at a few examples we need to define the model more precisely.
Presently, there are three basic shared-data structures:

Scalar An item which is kept by a single process specified when the data is
declared, along with the size of the item in bytes (future implementations may
support explicit typing of the components of an item to support heterogenous
environments).

Array An indexed list of items. Presently, only a single index is supported and
items are assumed to be of fixed size which is specified when the data is declared.
Most important is that the placement of the data is also declared. This may be
a linear distribution in chunks of size K, so that item i is held by process
p = (i /K + origin) mod P, P being the number of processes, origin being an offset
corresponding to the process holding element zero. It is intended also to support
pseudo-random and user defined hash functions.

Set An unordered set of items (again, currently of fixed size) which may be
distinguished only by contents. An out() stores the data locally if possible.
Otherwise, it searches in order of increasing distance for a node that can hold
more data. Similarly, an in() returns local data in preference to searching, again
in order of increasing distance, for remote data.

The following attributes of the basic operations are also relevant:

• Memory is allocated when an item is created with out() and is freed when
the item is destroyed with in(). The internal memory management routines
(DDmalloe(). DDfree()) are callable by the application so available memory may be
shared between application and tool kit.

• References to data that are stored locally incur only the cost of copying the
data into the user space, plus overhead from memory management, simple
indexing operations and procedure calls.

• References to remote scalar/array data cause a single message to be sent
directly to the node holding the data which responds with a single message when
the data becomes available.

Moving beyond message passing. Experiments with a distributed-data model 367

• Multiple writes (out()'s) to a scalar or array item are resolved in an unspecified
order.

• Fairness is guaranteed in multiple reads (in()'s) by queuing requests in FIFO
order.

If not specified otherwise, basic operations are intended to behave exactly as the
corresponding tuple operations of C-Linda.

3 Distributed data in action

First, let's convert the simple example of C-Linda syntax given above to the
distributed-data model.

include "ddata.h"
double coeff;
int CiVector, DDeclare();
CiVector = DDeclare("CI vector", ARRAY, LENGTH, sizeof(double),

CHUNKSIZE, 1, ORIGIN, 0);
OUT(CiVector, 199, &O.003);
RD(CiVector, 199, &coeft);

The array is declared with the call to DDeelare() which returns the integer handle
used to access this data structure. This use of handles retains the ability to assign
or swap entire distributed structures, without requiring either a preprocessor
or any pattern matching in the tool kit. The OUT() and RD() operations are, in
this instance, syntactically very similar to the C-Linda equivalents.

3.1 A barrier

We are now back in a shared-memory environment with all the associated
problems- mutual exclusion, race conditions, etc. Using message passing, pro-
cess synchronization was trivial - simply exchange messages. Synchronizing pro-
cesses via shared data is substantially more subtle, but fortunately is a problem
of classical concurrent computing and has long been solved (for an introduction
see ref. [31]). There are examples of simple barriers and semaphores using
C-Linda in ref. [19]. The distributed-data tool kit provides a routine Barrier()
which block until all processes rendezvous at that point. Following are the code
fragments that implement the barrier. First, the internal shared variables must be
declared and initialized (by process zero):

long Barrier_count--DDeclare("Barrier Count", SCALAR,
LENGTH, sizeof(long), NODE, 0);

long Barrier nthru = DDeclare("Barrier Nthru", SCALAR,
LENGTH, sizeof(long), NODE, 0);

long zero = 0;
if(NODEID_() = --0)
OUT(Barrier_Count, &zero);

The actual barrier, which may be used repeatedly, is implemented by

368 R.J. Harrison

void Barrier()
{

long counter, nthru = 0, zero = 0;
IN(Barrier_count, &counter); /* Count processes at barrier */
counter+ +;
if (counter= =NNODES_()) { /* If everyone is here */

nthru = 1; /* I'm the first thru */
else {
OUT(Barrier_count, &counter);/* Output counter */
IN(Barrier_nthru, &nthru); /*Wait for nthru to be posted */
nthru+ +; /*I'm thru now */

if (nthru < NNODES_())
OUT(Barrier_nthru, &nthru); /*Post no. thru so far */

else
0UT(Barrier_count, &zero) /*Last thru resets the barrier */

}
The counting of those going through the barrier is required so that the last

process through out()'s zero for the shared counter "Barrier Count", guaranteeing
that other processes cannot race through subsequent invocations of Barrier().
This algorithm is simple but inefficient, scaling as the number of processes.

3.2 Load balancing in QMC

The preceding example might give the impression that things have become worse,
not better! Let's now examine a simple and effective approach to load balancing
an application that is iteratively processing a distributed set of records which
take a widely varying amount of time to process. A good example of this,
quantum Monte Carlo with heavy branching, was introduced above. The simple
message-passing solution of using a single master and multiple slave model does
not scale to massively-parallel machines as the master becomes a bottleneck. One
can adopt a hierarchy of masters but the program becomes complex. It is far
better to distribute completely the administrative responsibilities along with the
data. The following code shows the structure of a load-balanced QMC kernel in
pseudo-C using the distributed-data tools.

struct Psip { L1
int generation;
int weight;
(. . .)

} psip;
int 01d = DDeclare("Old Psips", SET, L2

LENGTH, sizeof(psip));
int New = DDeclare("New Psips", SET,

LENGTH, sizeof(psip));
Initialize(Old);
while (nblocks--) {

while (INP(Old, &psip)) { L3
while (psip.generation < limit && psip.weight) {

AdvancePsip(&psip); IA

Moving beyond message passing. Experiments with a distributed-data model 369

while (psip.weight > 1) {
OUT(Old, &psip); L5
psip.weight--;
}

}
if (psip.weight) OUT(New, &psip); L6

}
temp = New; New = Old; Old = temp; L7
DGOP_(&type, Averages, &N_Averages, "+", scratch); L8

}
The structure psip (L1) contains all the information about a single psip (age,

multiplicity, coordinates, energy, etc.). Two distributed sets of psips are declared
(L2), corresponding to old and new lists, and the contents of the old list are
initialized. The code then loops through several sampling blocks. For each block
it withdraws an element from the old list (L3), if one is available, and moves it
(L4) for the requisite number of generations, accumulating averages, etc. If
random branching requires creation of additional copies, this is performed (L5)
by putting copies back onto the old list. If a psip makes it all the way to the end
of a block without being absorbed, it is put on the new list (L6) and the next old
psip is taken (L3). When all the old psips have been processed, the old and the
new lists are exchanged (L7) and each process's contributions to the global
averages are accumulated (L8). This last step uses a global reduction operation
from the message-passing tool kit T C G M S G [3], though it could have been done
less efficiently using shared data.

The above implementation transparently performs load balancing because
the psips are stored in the globally accessible, distributed data structures. The
properties of the operations INP() and OUT() specified above also imply that close
to the minimum of message passing is used in doing this. No message passing is
performed unless either no psips are available locally, or there is no room to
store a brachned/new psip. In both instances, requests are sent to nodes in order
of increasing distance, minimizing contention. Excess population from one node
"diffuses" to nodes with smaller populations.

3.3 A distributed file buffer

In addition to a poor software environment, most highly-parallel computers have
remarkably inadequate I/O capabilities (cf. the discussion on the Touchstone
Delta in the paper by Kendall et al. in these proceedings). As such it is almost
essential to buffer a file in memory as far as possible, a task that is relatively
complex with simple message-passing tools. The following (untested) F O R T R A N
routine implements a simple buffering algorithm for a shared, record addressable
file (fixed length records) where each node has an independent file pointer.

subroutine ReadRecord(unit, index, record)
include 'ddata.h'
parameter (nrec = 131072, lenrec = 8192)
integer unit, index, FileBuffer, DDeclare
logical INP, RDP
byte record(lenrec)
save FileBuffer

370 R . J . Harrison

if (index.le.nrec) then
if (.not. RDP(FileBuffer, index-l, record)) then

read(unit,rec = index) record
call OUT(FileBuffer, index-l, record)

endif
else

read(unit,rec = index) record
endif
return

entry WriteRecord(unit, index, record)
if (index.le.nrec) then

call OUT(FileBuffer, index-l, record)
else

write(unit,rec = index, record)
endif
return

entry FlushBuffer(unit, record)
do index -- 1, nrec

if (INP(FileBuffer, index-l, record))
$ write(unit, rec = index) record
enddo
return

entry DeclareBuffer()
FileBuffer = DDeclare('File buffer', ARRAY,

$ CHUNKSIZE, nrec/numnodes(),
$ LENGTH, lenrec, ORIGIN, 0);
end

The first 1-nrec records of the file are buffered in memory. The remainder are
read from disc as required. The code is simple enough to warrant no explanation.
The FORTRAN unit is opened and closed as usual. The application is unaware
of the buffering, except through increased performance, and the requirement that
FlushBuffer() must be called before closing the file. The values for nrec and lenrec
correspond to buffering the first giga-byte of the file - a reasonable thing to do
on the full Touchstone Delta, corresponding to dedicating 1/8th of physical
memory to the file. The manner in which the file buffer is best distributed is
application specific. One useful model is for each node to hold a block of
consecutive records, so that it is straightforward for a process to access only the
records local to it, while still retaining ready acess to the other sections. The
entry point DeclareBuffer() realizes this 1.

i In practice calls to DDeelare() are isolated in an automatically called initialization routine, ensuring
global definition before use

Moving beyond message passing. Experiments with a distributed-data model 371

4 Performance

The distributed-data tools described above are only experimental but their
performance is an important concern. Following are the first two such tests to be
run, both highlighting successes and failures of the curent version.

4.1 Latency -passing a message round a ring

The time to pass a message of varying length round a ring of varying size was
measured on the iPSC/i860 using message passing (NX [1]) and the distributed-
data interface. A simple performance model for the elapsed time (t) is:

t = P(% + n t l) (1)

where P is the number of processes in the ring, t0 is the overhead, tl is the
transmission time per byte and n is the length of the message in bytes. The raw
message-passing data fits to the values t0 = 78-85 kts and t I ~ - 0.362 #s/byte. The
corresponding values through the distributed-data interface are t 0 = 150-160 #s
and tl = 0.395/~s/byte. The latency is consistent with two messages being passed
for every remote data access (one for the request, one for the response). The
asymptotic distributed-data transfer rate is very slightly lower than that of raw
message passing due to the cost of copying the buffer in the OUT() operation
(copying the buffer runs at approx. 30 Mb/sec, thus the total time should be
1/30 + 0.362 = 0.395 #s/byte).

On two processors, the distributed-data times do not fit the simple perfor-
mance model. The cause for this is not fully resolved, but is thought to be
associated with time spent in memory management, etc., after having responded
to a remote request. With more than two nodes the above benchmark does not
measure this work, which is overlapped with the message being sent between
other nodes.

4.2 Load balancing

The QMC example above was simulated with the AdvancePsip() routine perform-
ing 20 double precision square roots, incrementing the generation counter and
recomputing the weight. The weight was randomly set to 0.5 with a probability
of 18/19 and to 10 otherwise. The weight was converted to an integer by the
usual trick of adding a uniform random number in (0, 1) and truncating. The
size of a psip was padded to 128 double-precision words and an initial popula-
tion of 10,000 psips was used with 100 generations per block. To make the total
work independent of the number of processors, a distinct random number
generator seed was carried along with each psip. The seed was incremented with
a fixed large number upon branching, providing approximate independence of
the copy from the original. However, the randomness inherent in ordering of
accesses to remote data implies that successive runs with the same number of
processors will still exhibit different distributions of work.

Figures 1, 2, and 3 display results from the iPSC/i860 for the first five blocks
of the simulation on varying numbers of processors. The entire population is
initially placed on a single processor, the worst case which also corresponds to a
single-master multiple-worker model. The most direct measure of load-balance is

372 R.J. Harrison

0.2

0,1

0,0

. _'.._'..L'=:: _:.=- ::: : : . := ::-:':--:-_

2 3 4

Block Number

Fig. 1. Model QMC work load
imbalance versus block number
for 16, 32 and 64 processes on
an iPSC-i860. The imbalance is
measured by the ratio of the
difference and sum of the
maximum and minimum work
done by any node. An
imbalance of 0.0 indicates
perfect balance. A value of 1.0
indicates at least one process
did no work

J 0.8

0.6 ----0-- 64 nodes]
_ ~ ' ~ _ 32 n°des /

. 16 nodes]

0,5
2

/ /
/ "

/ /

t
~.A t

3 4 5

Block Number

Fig. 2. Model QMC population
imbalance versus block number
for 16, 32 and 64 processes on
an iPSC-i860. The imbalance is
measured by the ratio of the
difference and sum of the
maximum and minimum
population on any node. An
imbalance of 0.0 indicates all
populations are equal. A value
of 1.0 indicates at least one
process has no psips

given by the range o f the number o f moves pe r fo rmed by each node (Fig . 1).
Af te r two b locks on 64 nodes the work imba lance is app rox ima te ly 10%, even
though the popu l a t i on imba lance (Fig . 2) is a lways greater than 60% due to
expected stat is t ical f luctuat ions. Increas ing the to ta l popu l a t i on would improve
the efficiency further , by smooth ing ou t f luctuat ions.

F u r t h e r analysis indicates tha t the t ime t aken to de te rmine tha t there are no
old psips anywhere in the machine is inefficient. This is cur rent ly done with a
naive po in t - to -po in t a lgor i thm with expense l inear in the number o f processors .
A t ree-based a lgor i thm results in logar i thmic expense and is being implemented .
F igure 3 d isplays es t imated speedup with and wi thou t this overhead (the
pe r fo rmance on one processor is es t imated f rom tha t on four processors as the
ca lcula t ion will no t fit in avai lable memory) . W i t h the overhead removed , the
64-processor ca lcula t ion exhibits a speedup o f 7.17 relat ive to 8 processors .
However , the 8-processor t ime shows a super- l inear speed-up o f 2.07 relat ive to
4 processors . This is poss ib ly due to a stat is t ical f luctuat ion in load-ba lanc ing ,

Moving beyond message passing. Experiments with a distributed-data model 373

• Corrected ~ ' ~

..m

16 32 48 64

No. of processors

Fig. 3. Model QMC estimated
speedup on an iPSC-i860. The
curve labelled measured
represents raw data. The
corrected curve differs by
subtraction of time taken to
determine that no old psips
remain, as discussed in the text

but could also be due to increasing overhead due to management of the memory
free list with fewer processors and thus more items per node. More analysis is
needed before a detailed evaluation of this benchmark is possible.

5 Conc lus ions

The distributed-data programming environment presented above preserves much
of the raw message passing:

• Message passing can be simulated efficiently through the distributed-data
interface. The current environment also allows the message-passing tools to be
called directly if the extra latency is intolerable.

• The programmer retains the vital ability to determine placement of the
application's data.

• The underlying machine model is still that of a distributed-memory machine -
remote data is more expensive to access than local data.

The last two points are particularly important because without these it is not
possible to model program performance accurately [14, 32].

The distributed-data environment provides several significant improvements
over raw message passing that result both from its relationship to Linda and the
restriction of the Linda memory model to specific data structures with known
distribution.

• An "uncoupled programming style" [16] - a process need not even be aware
of another process to provide data or resources for that process.

• The synchronization of processes resulting from access to distributed data is
minimal in the sense that write operations do not block and read operations
block automatically until data is made available.

• A uniform interface to distributed data is provided while still retaining full
information on locality which may optionally be used to improve efficiency. The
entire memory of the machine is now a resource that can be effectively exploited.

374 R.J. Harrison

• In sha red -memory environments , use o f d i s t r ibu ted da t a is subs tant ia l ly more
efficient than message passing.

The first two poin ts suppor t the observa t ion tha t it so far seems much easier to
write correct efficient p r o g r a m s using the d i s t r ibu ted -da ta interface than with
message passing. The d i s t r ibu ted -da ta mode l provides a very " n a t u r a l " f rame-
work for wri t ing a much b r o a d e r class o f appl ica t ions than message passing. I t
exposes more o f the machine resources to the appl ica t ion , and more o f the
app l i ca t ion to the env i ronment for increased opt imiza t ion .

There are also some negative aspects:

• Coo rd ina t i ng processes t h rough shared da t a is much ha rde r than with message
passing (cf. the imp lemen ta t ion o f Barrier()).

• I t is not clear how por t ab le this mode l is. Can the asser t ions a b o u t da t a
p lacement , which equate to access cost, and the event-dr iven a p p r o a c h be
suppor t ed on all ' in terest ing p la t forms?

• Aspects o f the current implemen ta t ion are deficient. F o r instance, an INP()
ope ra t ion on an empty set takes t ime O(P) to complete , ra ther than O(log P).

• Debugg ing tools are non-exis tent .

F inal ly , independen t forrays, such as this, into p r o g r a m m i n g models are bo th
educa t iona l and enjoyable . However , a por tab le , qual i ty env i ronment to suppor t
mass ive ly-para l le l scientific app l ica t ions can only result f rom a significant team
effort. M o r e co l l abo ra t ion is needed between physical scientist and compu te r
scientist in the specif icat ion o f such an envi ronment .

Acknowledgments. This work was supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, Division of Chemical Sciences, under contract W-31-109-ENG-38. I thank R.
Littlefield, E. Lusk and R. Stevens for many interesting discussions on parallel computing and R.
Shepard and J.-K. Fisher for reading of this manuscript.

R e f e r e n c e s

1. iPSC/2 Users Guide (1988) Intel Corporation
2. Express is a product of ParaSoft, Mission Viejo, CA
3. Harrison RJ (1991) Int J Quant Chem in press
4. p4 are a set of portable message passing routines being distributed by Ewing Lusk of the Math

and Comp Sci division at Argonne. They are the current version of the tools described in Ref.
[5]

5. Boyle J, Butler R, Disz T, Glickfeld B, Lusk E, Overbeek R, Patterson J, Stevens R (1987)
Portable programs for parallel processors, Holt, Rinehart, Winston, NY

6. Geist GA, Heath MT, Peyton BW, Worley PH (1990) Oak Ridge Natl Laboratory Tech Report
TM-11616:l

7. Beguelin A, Dongarra J, Geist A, Manchek R, Sunderam V (1991) Oak Ridge Natl Laboratory
Tech Report TM-11826:1

8. May D (1983) ACM SIGPLAN Notices 18:69
9. Bowler KC, Kenway RD, Pawley GS, Roweth D (1984) Occam 2 Programming Language,

Prentice-Hall, Englewood Cliffs, NJ
I0. The IBM LCAP project provides a counter example with use of loop and process level parallel

extensions to FORTRAN on their mixed shared and local memory architecture. See Refs.
[11, 12] and references therein

11. Watts JE, Dupuis M, Villar HO (August 29, 1986) IBM Tech Rep KGN-78:I

Moving beyond message passing. Experiments with a distributed-data model 375

12. Dupnis M, Watts JD (1987) Theor Chim Acta 71:91
13. Harrison RJ, Kendall RA (1991) Theor Chim Acta 79:337
14. Almasi GS, Gottlieb A (1989) Highly parallel computing, Benjamin/Cummings, Redwood City,

CA
15. Andrews GR (1991) Concurrent Programming: principles and practice, Benjamin/Cummings,

Redwood City, CA
16. Carriero N, Gelernter D (1989) Communications of the ACM 32:444
17. Foster I, Taylor S (1990) Strand, new concepts in parallel programming. Prentice-Hall, NJ
18. Chandy KM, Misra J (1988) Parallel program design, A foundation. Addison-Wesiey, Reading,

MA
19. Carriero N, Gelernter D (1990) How to write parallel programs. A first course. MIT Press,

Cambridge, MA
20. C-Linda is distributed commercially by Scientific Computing Associates, New Haven, Connecti-

cut
21. Chandy KM, Taylor S, Kesselman C, Foster I (February 1990) Caltech Comp. Sci. Tech. Report

CS-TR-90-03:1
22. Foster I, Taylor S (January 1990) Argonne National Laboratory Report ANL/MCS-TM-137:l
23. Several tools (e.g. VAST, MIMDIZER, FORGE) are developed and distributed by Pacific

Sierra, Palcerville, CA. See the article by J. Levesque in these proceedings.
24. Kuck DJ, Davidson ES, Lawrie DH, Sameh AH (1987) in: Dongarra J (ed) Experimental

parallel computing architectures. Elsevier, North-Holland, Amsterdam, p 1
25. Guzzi M, Padua D, Hoeflinger J, Lawrie D (1990) J Supercomputing 3:37
26. Cooper KD, Kennedy K, Torczon L (1986) ACM SICPLAN Notices 21:58
27. Wilson G (ed) (1991) Linda-like systems and their implementation. Edinburgh Parallel Comput-

ing Centre Techn Rep 91-13
28. Bain WL (1989) ACM SIGPLAN Notices 24:95
29. Callsen CJ, Cheng I, Hagen PL, p 39 in [27].
30. Schoinas G, pp. 105 in [27]
31. Ben-Ari M (1982) Principles of concurrent programming. Prentice-Hall, Englewood Cliffs, NJ
32. Anderson RJ, Synder L (1991) Proc IEEE 79:480

