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Summary. A message-passing model provides a natural and efficient parallel 
implementation for many applications in chemical physics on MIMD machines. 
However, although the distinction between local and non-local memory is at the 
very heart of writing efficient parallel programs, message passing leaves all 
responsibility for data management to the applications. This has significant, 
detrimental implications for both ease of programming and efficient use of 
shared and distributed resources. Examined here is a simple model which 
increments message passing with Linda-like tools for the manipulation of 
distributed-data structures. This is applied to common algorithms in chemical 
physics. 
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1 Introduction 

Many algorithms in chemical physics are either parallel at a very coarse grain 
(e.g. Monte Carlo or SCF) or are readily addressed with either a static domain 
decomposition or task-driven systolic loop. In either case, message passing 
provides an efficient and natural implementation. All the distributed-memory 
multiple-instruction multiple-data (MIMD) applications described at this work- 
shop adopted a message-passing model. The message-passing interface may have 
been vendor specific (i.e. Intel's NX [1]), or portable (e.g. Parasoft's Express [2]), 
TCGMSG [3], P4 [4], PIC.L [6], PVM [7]) or built into the language (e.g. occam 
[8, 9]), but they are all very similar in spirit. The essentially exclusive adoption of 
message passing is also reflected in the physical sciences parallel computing 
literature where the only common alternative adopted is loop-based parallelism, 
usually in a few-processor shared-memory environment [10]. 

However, there are many algorithms for which the derivation of a message- 
passing implementation is non-trivial, error-prone and far from "natural". 
Dynamic load balancing can be such a problem as this requires global access and 
updating of the pool/list/index of tasks remaining to be performed. This arises in 
quantum Monte Carlo simulations with a large spread in branching weights or 
the evaluation of ab initio two-electron integrals in systems with high symmetry 
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and/or high angular momentum functions [13]. Both give rise to a large variation 
in the task size. 

Another example is provided by an algorithm requiring asynchronous access 
(read or write) to the data within another process. This might occur in domain 
decompositions with exchange of boundary information or in accessing a shared 
"file" that is being buffered in distributed memory. A message-passing solution 
is straightforward only if the process with the data can anticipate when other 
processes will access data. Otherwise, each process must either explicitly poll for 
requests or implement fully-asynchronous event-driven mechanisms to allow the 
process to continue with useful work while transparently processing remote 
requests. The second solution is by far the most sophisticated and powerful, but 
is expensive to code on a case-by-case basis and requires that the programmer be 
knowledgeable of issues of which most physical scientists would probably rather, 
and quite reasonably so, remain unaware: e.g. deadlock, mutual-exclusion, 
re-entrancy, event-driven algorithms. Of these, only deadlock is of common 
concern in most message-passing programs. Also, many FORTRAN compilers 
are not capable of generating re-entrant code, requiring use of other languages. 

In both of these examples the manipulation of shared/distributed data was 
the prime cause of the complexity. Consider also how these concerns are 
magnified on machines with many more processors (e.g. O(104)) than is common 
today (approx. O(102)). Few would claim to understand how to make effective 
use of the resources of such machines and a message-passing model, except by 
making the distinction between local and remote memory painfully explicit, does 
not contribute to an understanding of writing scalable applications. 

There are possibly more parallel programming models, languages, environ- 
ments, paradigms, etc. than computer scientists, and a selection of formal 
frameworks within which parallel programs may be specified independent of their 
implementation (good introductions to this literature are contained in [14-18] 
and in conference proceedings published in the various ACM journals). Little of 
this work has thus far been expressed in widely available, supported scientific 
programming environments (exceptions might be Linda [16, 19, 20], Strand [17], 
PCN [21, 22], loop level parallel FORTRAN/C compilers [14, 23-26]), but the 
concepts involved are of immediate utility. For the present, message passing 
remains the only parallel-programming environment that one can almost guaran- 
tee is both readily available and potentially efficient on any MIMD machine. 

We adopt an incremental approach and add just what is needed to recover a 
concise and efficient expression of the class of algorithms discussed above. This 
acknowledges the fact that many applications contain a mix of algorithms, only 
some of which may require higher level tools. An incremental approach also 
permits applications already using message-passing environments to take immedi- 
ate advantage of these tools, which will be integrated into our portable message- 
passing tool kit TCGMSG [3] as appropriate. In the process, we shall attempt to 
learn about how to take advantage of more of the parallelism in our applications. 

2 Distributed data 

2.1 Linda 

Linda [ 16, 19] is a memory model and a coordination language. Realizations of 
this model in C and FORTRAN are commercially available [20] and there are 
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many directions of related current research [27]. Few details of Linda will be 
given here; see [19] for an introduction. The Linda memory is a tuple space, a 
tuple being a series of typed values. Tuples may be either passive or under 
evaluation (representing a thread of execution). C-Linda [19, 20] provides six 
operations on tuples, out(), in(), rd(), hap(), rdp() and eval() which also coordinate 
access to tuples, out() adds a tuple to tuple space, in() blocks until it finds a tuple 
that matches the specified pattern, returns the requested data and then removes 
the tuple from tuple space, rd() performs the same operation as in() except the 
tuple is left in tuple space, while inp() and rdp() are non-blocking forms which 
return true or false according to if the request was satisfied, eval() is similar to 
out() except that new processes are created to evaluate each field of the tuple. 
When all fields are evaluated, the tuple becomes passive. 

As an example, consider creation of a tuple to simulate an element (number 
199) in a distributed array which is subsequently read into the variable coeff, 
perhaps in another process: 

double coeff; 
out("CI vector", 199, 0.003): 
rd("CI vector", 199, ? coeff): 

Linda provides a powerful programming model of which we shall adopt only 
one aspect - the construction and manipulation of distributed-data structures 
(ref. [19] provides many examples of such data). For examples of other environ- 
ments drawing on concepts from Linda see ref. [27]. 

2.2 A simple distributed-data model 

We seek to augment the successful static process message-passing model, with 
efficient tools to manipulate and coordinate access to shared and distributed 
data. The static process model implies we shall not use eval(). The applications 
we are considering need only simple distributed-data structures, e.g. scalar, 
arrays, sets of records. Current realizations of Linda [20, 27] fail to provide 
information on where or how tuples are stored or accessed. Indeed, with a 
requirement to match general tuples (partly at compile time, partly at runtime) 
this information is not necessarily readily available. This prevents development 
of accurate performance-models and can introduce inefficiencies in memory 
usage and communication. In particular, large applications need to be fully 
aware of local memory usage on typical-sized compute nodes (4-16 Mybtes). 
Since we have only a limited number of data types, we may explicitly declare the 
structure of the data, permitting the implementation to declare how and where 
this data is stored. We no longer have a tuple space, merely some shared data. 
Message passing would be extremely clumsy to coordinate access to the shared 
data, so we retain the coordination properties of the basic operations (out(), in(), 
rd(). inp(), rdp()) on the shared data. 

Having thrown out so much of Linda, what is left? 

• The existing message-passing interface (TCGMSG [3] or whatever is per- 
ferred). 

• The basic shared/distributed-data structures that we care to support explicitly 
(to data: scalars; arrays; sets). 
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• All the distributed-data structures that can be built from the basic structures, 
which includes: linked lists; queues; trees. 

• All the structures that arise from the coordination properties of the basic 
operations (e.g. semaphores, barriers, monitors). 

A very rich environment! In fact, between the message passing and the dis- 
tributed data, there is a great deal of redundancy in this environment. This is 
exactly what is needed for our present purpose, as we can freely experiment with 
both models in the same program. 

Similar suggestions have been made in other environments related to Linda. 
Indexed objects (i.e. arrays) have been implemented in the object-oriented 
Interwork lI Concurrent Programming Toolkit [28] with the goals of increasing 
efficiency and expressivity. The developers of the AUCC+ +Linda System 
[29] explicitly recognize tuple distribution as being critical to optimization and 
conclude that current hash-table implementations are inadequate. Optimizations 
proposed for the Mercury model [30] include user-defined data structures in tuple 
space to permit optimization of data distribution in a networked environment. 

Before looking at a few examples we need to define the model more precisely. 
Presently, there are three basic shared-data structures: 

Scalar An item which is kept by a single process specified when the data is 
declared, along with the size of the item in bytes (future implementations may 
support explicit typing of the components of an item to support heterogenous 
environments). 

Array An indexed list of items. Presently, only a single index is supported and 
items are assumed to be of fixed size which is specified when the data is declared. 
Most important is that the placement of the data is also declared. This may be 
a linear distribution in chunks of size K, so that item i is held by process 
p = ( i /K  + origin) mod P, P being the number of processes, origin being an offset 
corresponding to the process holding element zero. It is intended also to support 
pseudo-random and user defined hash functions. 

Set An unordered set of items (again, currently of fixed size) which may be 
distinguished only by contents. An out() stores the data locally if possible. 
Otherwise, it searches in order of increasing distance for a node that can hold 
more data. Similarly, an in() returns local data in preference to searching, again 
in order of increasing distance, for remote data. 

The following attributes of the basic operations are also relevant: 

• Memory is allocated when an item is created with out() and is freed when 
the item is destroyed with in(). The internal memory management routines 
(DDmalloe(). DDfree()) are callable by the application so available memory may be 
shared between application and tool kit. 

• References to data that are stored locally incur only the cost of copying the 
data into the user space, plus overhead from memory management, simple 
indexing operations and procedure calls. 

• References to remote scalar/array data cause a single message to be sent 
directly to the node holding the data which responds with a single message when 
the data becomes available. 
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• Multiple writes (out()'s) to a scalar or array item are resolved in an unspecified 
order. 

• Fairness is guaranteed in multiple reads (in()'s) by queuing requests in FIFO 
order. 

If not specified otherwise, basic operations are intended to behave exactly as the 
corresponding tuple operations of C-Linda. 

3 Distributed data in action 

First, let's convert the simple example of C-Linda syntax given above to the 
distributed-data model. 

# include "ddata.h" 
double coeff; 
int CiVector, DDeclare(); 
CiVector = DDeclare("CI vector", ARRAY, LENGTH, sizeof(double), 

CHUNKSIZE, 1, ORIGIN, 0); 
OUT(CiVector, 199, &O.003); 
RD(CiVector, 199, &coeft); 

The array is declared with the call to DDeelare() which returns the integer handle 
used to access this data structure. This use of handles retains the ability to assign 
or swap entire distributed structures, without requiring either a preprocessor 
or any pattern matching in the tool kit. The OUT() and RD() operations are, in 
this instance, syntactically very similar to the C-Linda equivalents. 

3.1 A barrier 

We are now back in a shared-memory environment with all the associated 
problems-  mutual exclusion, race conditions, etc. Using message passing, pro- 
cess synchronization was trivial - simply exchange messages. Synchronizing pro- 
cesses via shared data is substantially more subtle, but fortunately is a problem 
of classical concurrent computing and has long been solved (for an introduction 
see ref. [31]). There are examples of simple barriers and semaphores using 
C-Linda in ref. [19]. The distributed-data tool kit provides a routine Barrier() 
which block until all processes rendezvous at that point. Following are the code 
fragments that implement the barrier. First, the internal shared variables must be 
declared and initialized (by process zero): 

long Barrier_count--DDeclare("Barrier Count", SCALAR, 
LENGTH, sizeof(long), NODE, 0); 

long Barrier nthru = DDeclare("Barrier Nthru", SCALAR, 
LENGTH, sizeof(long), NODE, 0); 

long zero = 0; 
if(NODEID_() = --0) 
OUT(Barrier_Count, &zero); 

The actual barrier, which may be used repeatedly, is implemented by 
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void Barrier() 
{ 

long counter, nthru = 0, zero = 0; 
IN(Barrier_count, &counter); /* Count processes at barrier */ 
counter+ +; 
if (counter= =NNODES_()) { /* If everyone is here */ 

nthru = 1; /* I'm the first thru */ 
else { 
OUT(Barrier_count, &counter);/* Output counter */ 
IN(Barrier_nthru, &nthru); /*Wait for nthru to be posted */ 
nthru+ +; /*I'm thru now */ 

if (nthru < NNODES_()) 
OUT(Barrier_nthru, &nthru); /*Post no. thru so far */ 

else 
0UT(Barrier_count, &zero) /*Last thru resets the barrier */ 

} 
The counting of those going through the barrier is required so that the last 

process through out()'s zero for the shared counter "Barrier Count", guaranteeing 
that other processes cannot race through subsequent invocations of Barrier(). 
This algorithm is simple but inefficient, scaling as the number of processes. 

3.2 Load balancing in QMC 

The preceding example might give the impression that things have become worse, 
not better! Let's now examine a simple and effective approach to load balancing 
an application that is iteratively processing a distributed set of  records which 
take a widely varying amount of time to process. A good example of this, 
quantum Monte Carlo with heavy branching, was introduced above. The simple 
message-passing solution of using a single master and multiple slave model does 
not scale to massively-parallel machines as the master becomes a bottleneck. One 
can adopt a hierarchy of  masters but the program becomes complex. It is far 
better to distribute completely the administrative responsibilities along with the 
data. The following code shows the structure of a load-balanced QMC kernel in 
pseudo-C using the distributed-data tools. 

struct Psip { L1 
int generation; 
int weight; 
( . . . )  

} psip; 
int 01d = DDeclare("Old Psips", SET, L2 

LENGTH, sizeof(psip)); 
int New = DDeclare("New Psips", SET, 

LENGTH, sizeof(psip)); 
Initialize(Old); 
while (nblocks--) { 

while (INP(Old, &psip)) { L3 
while (psip.generation < limit && psip.weight) { 

AdvancePsip(&psip); IA 
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while (psip.weight > 1) { 
OUT(Old, &psip); L5 
psip.weight--; 
} 

} 
if (psip.weight) OUT(New, &psip); L6 

} 
temp = New; New = Old; Old = temp; L7 
DGOP_(&type, Averages, &N_Averages, "+", scratch); L8 

} 
The structure psip (L1) contains all the information about a single psip (age, 

multiplicity, coordinates, energy, etc.). Two distributed sets of psips are declared 
(L2), corresponding to old and new lists, and the contents of the old list are 
initialized. The code then loops through several sampling blocks. For each block 
it withdraws an element from the old list (L3), if one is available, and moves it 
(L4) for the requisite number of  generations, accumulating averages, etc. If 
random branching requires creation of additional copies, this is performed (L5) 
by putting copies back onto the old list. If  a psip makes it all the way to the end 
of a block without being absorbed, it is put on the new list (L6) and the next old 
psip is taken (L3). When all the old psips have been processed, the old and the 
new lists are exchanged (L7) and each process's contributions to the global 
averages are accumulated (L8). This last step uses a global reduction operation 
from the message-passing tool kit T C G M S G  [3], though it could have been done 
less efficiently using shared data. 

The above implementation transparently performs load balancing because 
the psips are stored in the globally accessible, distributed data structures. The 
properties of  the operations INP() and OUT() specified above also imply that close 
to the minimum of message passing is used in doing this. No message passing is 
performed unless either no psips are available locally, or there is no room to 
store a brachned/new psip. In both instances, requests are sent to nodes in order 
of increasing distance, minimizing contention. Excess population from one node 
"diffuses" to nodes with smaller populations. 

3.3 A distributed file buffer 

In addition to a poor software environment, most highly-parallel computers have 
remarkably inadequate I/O capabilities (cf. the discussion on the Touchstone 
Delta in the paper by Kendall et al. in these proceedings). As such it is almost 
essential to buffer a file in memory as far as possible, a task that is relatively 
complex with simple message-passing tools. The following (untested) F O R T R A N  
routine implements a simple buffering algorithm for a shared, record addressable 
file (fixed length records) where each node has an independent file pointer. 

subroutine ReadRecord(unit, index, record) 
include 'ddata.h' 
parameter (nrec = 131072, lenrec = 8192) 
integer unit, index, FileBuffer, DDeclare 
logical INP, RDP 
byte record(lenrec) 
save FileBuffer 
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if (index.le.nrec) then 
if (.not. RDP(FileBuffer, index-l, record)) then 

read(unit,rec = index) record 
call OUT(FileBuffer, index-l, record) 

endif 
else 

read(unit,rec = index) record 
endif 
return 

entry WriteRecord(unit, index, record) 
if (index.le.nrec) then 

call OUT(FileBuffer, index-l, record) 
else 

write(unit,rec = index, record) 
endif 
return 

entry FlushBuffer(unit, record) 
do index -- 1, nrec 

if (INP(FileBuffer, index-l, record)) 
$ write(unit, rec = index) record 
enddo 
return 

entry DeclareBuffer() 
FileBuffer = DDeclare('File buffer', ARRAY, 

$ CHUNKSIZE, nrec/numnodes(), 
$ LENGTH, lenrec, ORIGIN, 0); 
end 

The first 1-nrec records of the file are buffered in memory. The remainder are 
read from disc as required. The code is simple enough to warrant no explanation. 
The FORTRAN unit is opened and closed as usual. The application is unaware 
of the buffering, except through increased performance, and the requirement that 
FlushBuffer() must be called before closing the file. The values for nrec and lenrec 
correspond to buffering the first giga-byte of the file - a reasonable thing to do 
on the full Touchstone Delta, corresponding to dedicating 1/8th of physical 
memory to the file. The manner in which the file buffer is best distributed is 
application specific. One useful model is for each node to hold a block of 
consecutive records, so that it is straightforward for a process to access only the 
records local to it, while still retaining ready acess to the other sections. The 
entry point DeclareBuffer() realizes this 1. 

i In practice calls to DDeelare() are isolated in an automatically called initialization routine, ensuring 
global definition before use 
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4 Performance 

The distributed-data tools described above are only experimental but their 
performance is an important concern. Following are the first two such tests to be 
run, both highlighting successes and failures of the curent version. 

4.1 Latency -passing a message round a ring 

The time to pass a message of varying length round a ring of varying size was 
measured on the iPSC/i860 using message passing (NX [1]) and the distributed- 
data interface. A simple performance model for the elapsed time (t) is: 

t = P(% + n t l )  (1) 

where P is the number of  processes in the ring, t0 is the overhead, tl is the 
transmission time per byte and n is the length of the message in bytes. The raw 
message-passing data fits to the values t0 = 78-85 kts and t I ~ -  0.362 #s/byte. The 
corresponding values through the distributed-data interface are t 0 = 150-160 #s 
and tl  = 0.395/~s/byte. The latency is consistent with two messages being passed 
for every remote data access (one for the request, one for the response). The 
asymptotic distributed-data transfer rate is very slightly lower than that of raw 
message passing due to the cost of copying the buffer in the OUT() operation 
(copying the buffer runs at approx. 30 Mb/sec, thus the total time should be 
1/30 + 0.362 = 0.395 #s/byte). 

On two processors, the distributed-data times do not fit the simple perfor- 
mance model. The cause for this is not fully resolved, but is thought to be 
associated with time spent in memory management, etc., after having responded 
to a remote request. With more than two nodes the above benchmark does not 
measure this work, which is overlapped with the message being sent between 
other nodes. 

4.2 Load balancing 

The QMC example above was simulated with the AdvancePsip() routine perform- 
ing 20 double precision square roots, incrementing the generation counter and 
recomputing the weight. The weight was randomly set to 0.5 with a probability 
of  18/19 and to 10 otherwise. The weight was converted to an integer by the 
usual trick of  adding a uniform random number in (0, 1) and truncating. The 
size of a psip was padded to 128 double-precision words and an initial popula- 
tion of 10,000 psips was used with 100 generations per block. To make the total 
work independent of the number of  processors, a distinct random number 
generator seed was carried along with each psip. The seed was incremented with 
a fixed large number upon branching, providing approximate independence of 
the copy from the original. However, the randomness inherent in ordering of  
accesses to remote data implies that successive runs with the same number of 
processors will still exhibit different distributions of work. 

Figures 1, 2, and 3 display results from the iPSC/i860 for the first five blocks 
of the simulation on varying numbers of  processors. The entire population is 
initially placed on a single processor, the worst case which also corresponds to a 
single-master multiple-worker model. The most direct measure of load-balance is 
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Fig. 1. Model QMC work load 
imbalance versus block number 
for 16, 32 and 64 processes on 
an iPSC-i860. The imbalance is 
measured by the ratio of the 
difference and sum of the 
maximum and minimum work 
done by any node. An 
imbalance of 0.0 indicates 
perfect balance. A value of 1.0 
indicates at least one process 
did no work 
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Fig. 2. Model QMC population 
imbalance versus block number 
for 16, 32 and 64 processes on 
an iPSC-i860. The imbalance is 
measured by the ratio of the 
difference and sum of the 
maximum and minimum 
population on any node. An 
imbalance of 0.0 indicates all 
populations are equal. A value 
of 1.0 indicates at least one 
process has no psips 

given by  the range o f  the number  o f  moves  pe r fo rmed  by  each node  (Fig .  1). 
Af te r  two b locks  on  64 nodes  the work  imba lance  is app rox ima te ly  10%, even 
though  the popu l a t i on  imba lance  (Fig .  2) is a lways greater  than  60% due to 
expected stat is t ical  f luctuat ions.  Increas ing the to ta l  popu l a t i on  would  improve  
the efficiency further ,  by smooth ing  ou t  f luctuat ions.  

F u r t h e r  analysis  indicates  tha t  the t ime t aken  to de te rmine  tha t  there are no 
old psips anywhere  in the machine  is inefficient. This is cur rent ly  done  with  a 
naive po in t - to -po in t  a lgor i thm with  expense l inear  in the number  o f  processors .  
A t ree-based a lgor i thm results in logar i thmic  expense and is being implemented .  
F igure  3 d isplays  es t imated  speedup  with  and  wi thou t  this overhead  ( the  
pe r fo rmance  on one processor  is es t imated  f rom tha t  on four  processors  as the 
ca lcula t ion  will no t  fit in avai lable  memory) .  W i t h  the overhead  removed ,  the 
64-processor  ca lcula t ion  exhibits  a speedup  o f  7.17 relat ive to 8 processors .  
However ,  the 8-processor  t ime shows a super- l inear  speed-up  o f  2.07 relat ive to 
4 processors .  This  is poss ib ly  due to a stat is t ical  f luctuat ion in load-ba lanc ing ,  
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Fig. 3. Model QMC estimated 
speedup on an iPSC-i860. The 
curve labelled measured 
represents raw data. The 
corrected curve differs by 
subtraction of time taken to 
determine that no old psips 
remain, as discussed in the text 

but could also be due to increasing overhead due to management of the memory 
free list with fewer processors and thus more items per node. More analysis is 
needed before a detailed evaluation of this benchmark is possible. 

5 Conc lus ions  

The distributed-data programming environment presented above preserves much 
of the raw message passing: 

• Message passing can be simulated efficiently through the distributed-data 
interface. The current environment also allows the message-passing tools to be 
called directly if the extra latency is intolerable. 

• The programmer retains the vital ability to determine placement of  the 
application's data. 

• The underlying machine model is still that of a distributed-memory machine - 
remote data is more expensive to access than local data. 

The last two points are particularly important because without these it is not 
possible to model program performance accurately [14, 32]. 

The distributed-data environment provides several significant improvements 
over raw message passing that result both from its relationship to Linda and the 
restriction of the Linda memory model to specific data structures with known 
distribution. 

• An "uncoupled programming style" [16] - a process need not even be aware 
of another process to provide data or resources for that process. 

• The synchronization of processes resulting from access to distributed data is 
minimal in the sense that write operations do not block and read operations 
block automatically until data is made available. 

• A uniform interface to distributed data is provided while still retaining full 
information on locality which may optionally be used to improve efficiency. The 
entire memory of  the machine is now a resource that can be effectively exploited. 
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• In  sha red -memory  environments ,  use o f  d i s t r ibu ted  da t a  is subs tant ia l ly  more  
efficient than  message passing.  

The  first two poin ts  suppor t  the observa t ion  tha t  it  so far  seems much  easier to 
write  correct  efficient p r o g r a m s  using the d i s t r ibu ted -da ta  interface than  with 
message passing.  The d i s t r ibu ted -da ta  mode l  provides  a very " n a t u r a l "  f rame-  
work  for  wri t ing a much  b r o a d e r  class o f  appl ica t ions  than  message passing.  I t  
exposes more  o f  the machine  resources  to the appl ica t ion ,  and  more  o f  the 
app l i ca t ion  to the env i ronment  for  increased opt imiza t ion .  

There  are  also some negative aspects:  

• Coo rd ina t i ng  processes t h rough  shared da t a  is much  ha rde r  than  with  message 
passing (cf. the imp lemen ta t ion  o f  Barrier()). 

• I t  is not  clear  how por t ab le  this mode l  is. Can  the asser t ions a b o u t  da t a  
p lacement ,  which equate  to access cost,  and  the event-dr iven a p p r o a c h  be 
suppor t ed  on all '  in terest ing p la t forms?  

• Aspects  o f  the current  implemen ta t ion  are  deficient. F o r  instance,  an INP() 
ope ra t ion  on an  empty  set takes  t ime O(P) to complete ,  ra ther  than  O( log  P). 

• Debugg ing  tools  are non-exis tent .  

F inal ly ,  independen t  forrays,  such as this, into p r o g r a m m i n g  models  are bo th  
educa t iona l  and  enjoyable .  However ,  a por tab le ,  qual i ty  env i ronment  to suppor t  
mass ive ly-para l le l  scientific app l ica t ions  can only result  f rom a significant team 
effort. M o r e  co l l abo ra t ion  is needed between physical  scientist  and  compu te r  
scientist  in the specif icat ion o f  such an envi ronment .  
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